做产品需要了解的数据知识
做产品离不开数据,无论是在初期的需求规划,还是在项目上线的效果评估,都需要数据支撑。这两天一直在做数据报表梳理,觉得以下几个点是产品在做数据工作是需要关注的几点:
1、数据来源
数据来源直接决定是数据的正确性和可用性。一般产品数据获取渠道有三个:数据上报、历史经验和第三方资料,数据上报又分为客户端上报和服务器上报。新产品规划阶段,我们可能更多的通过第三方数据或者竞品的经验数据来作为参考,一旦产品上线,就需要及时通过上报数据来进行进行产品思路验证和优化改进。
不同数据来源的数据差异很大,其分析结果可比性较差,建议各位产品最早的版本迭代中就加入基础数据统计,通过版本迭代来不断完善数据统计。
2、指标定义
指标定义明确是数据易读的基础,拿DAU(日活跃用户数)来说,只有明白了活跃的定义,数据才有意义。举例,某视频软件DAU1000万,猛一看很高,但是发现他们对日活的定义是启动,而该软件可以自定义开机启动,那么这个数据就值得商榷。如果把有视频观看行为定义为活跃,那么DAU立刻就变为300W,这个数据才属于有效数据,这个数据也更有意义。
3、上报机制
上报机制可以理解为数据上报的策略。比如,行为产生的日志是否支持在移动网络下上报,上报时间间隔多久,进程被杀掉之后如何上报,上报过程中丢包概率···上报机制的制定直接决定上报数据的完整性和即时性。对产品来说,一定是希望数据同步上报,但是考虑到用户手机流量、电量等因素,一般需要做出取舍。
以前我只注意到数据上报的完整性,并未考虑到即时性,今天同事举的一个例子让我茅塞顿开:十一假期,你辛辛苦苦做了一份数据报表,分析的头头是道,并且给出了后期计划;三天以后,用户结束了长假,刚刚从3G环境切换到WIFI网络,大量新的数据上报,你发现你依赖的所有数据均发生了变化,你所有的分析都是基于不完整的甚至是错误的数据···
4、数据可视化
数据很重要的一项功能是通过趋势变化来反映问题,因此可视化是数据一个重要的展示形式,给你一张密密麻麻的表,如果没有图表支持,数据基本是死的,无法利用。因此在数据量统计之初,就要有效的结合起可视化图表,完成对趋势的把握。
对成规模的数据来说,必然有规律的数据曲线,或是周期上升,或是周期波动,如果某个指标的数据图表振幅巨大毫无规律,那么就要去拆分数据,剔除其中无规律的波动因素A,重新对剩余数据做可视化视图,直到呈现出规律波动。后期只需要对稳定的数据进行监控,有无异常,一目了然。
目前我们最大的问题不是数据不够,而是数据太多,无从入手。从同事那里获得的经验就是最好自己用excel整理一份原始数据,一是避免服务器挂掉,二也方便自己做更多个性化分析处理,进行各种计算尝试。数据分析属于基础能力,不受行业和岗位限制,本质上讲分析方法只是辅助工具,根本上还是需要娴熟的业务能力做支撑。
#专栏作家#
无邪,微信公众账号:devillnote,人人都是产品经理专栏作家,迅雷产品经理。关注移动互联网,聚焦产品策划、运营和用户分析。文章不追热点,以产品经理相关为主。
转载请保留上述作者信息并附带本文链接
-
微信创始人张小龙首次公开演讲(官方无删减版)
微信创始人张小龙首次公开演讲(官方无删减版) -
如何通过APP看到产品战略层面
产品经理拿到一款产品的时候,不能只能看到表面信息,而是要能看到产品背后的信息。 -
基于用户的“真需求”创新产品
产品创新是保证企业在竞争激烈的市场上长久生存的关键,今天,我们就围绕产品创新和用户研究分享一些看法。 -
有一种交互设计研究验证叫“设计走查”
如何在最短的时间内对自己的产品做出检验,确保其在定位、设计、营销计划等多个环节,在可视范围内是正确的,需要一套比较科学、完善的方法去做出检测。 -
你为什么离不开微信?
张小龙说用完即走,你却爱不释手; 到底是什么让你离不开微信? -
移动互联时代APP的发展方向
现在我们已经走上了移动互联网时代,无论是企业还是公司,都会经过网络竞争中争取有利的优势,较为传统的产品竞争逐渐向互联网竞争转型,出现了很多数据云大数据等等 -
AI 时代产品经理的机遇和挑战
AI 时代产品经理的机遇和挑战 -
前1%与前10%的产品经理差距在哪?
前1%与前10%的产品经理差距在哪? -
你有哪些策略应对不断的需求变更?
你有哪些策略应对不断的需求变更? -
如何运营天猫【十亿俱乐部】商家页面?
如何运营天猫【十亿俱乐部】商家页面?

